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The point of radian measure (although this probably isn’t
apparent when we first learn it) is to give a parameterization
of the unit circle in terms of arc length. The θ in cos (θ) and
sin (θ) doesn’t really represent an angle, it is distance (along
the curve).
By substituting different curves in place of x2 + y 2 = 1 we get
alternate versions of trigonometry.
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ordinary trig

1. The circle x2 + y 2 = 1 gives rise to ordinary trig.

2. We move the point (x , y) around the circle at unit speed.

3. That way time t and distance d (along the curve) are
equal.

4. x(t) = cos (t) and y(t) = sin (t).

5. The equation of the circle produces the fundamental
identity

cos2(t) + sin2(t) = 1
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a non-standard trig

1. Hyperbolic trigonometry

2. We replace the unit circle x2 + y 2 = 1 with the unit
hyperbola x2 − y 2 = 1

3. We move the point (x , y) along the hyperbola at unit
speed.

4. Let t = 0 correspond to (1, 0).

5. x(t) = cosh (t) and y(t) = sinh (t).

6. The equation of the hyperbola forces the these functions
to satisfy

cosh2(t) − sinh2(t) = 1
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Taylor series
Fourier series

The solution to how to go from A to B

Joint work with Leon Q. Brin.
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A problem from mechanism design

Finding the optimal motion profile for a
transfer-dwell-return-dwell cam, has lead to the discovery of a
curious family of functions. Functions that are self-similar to
one of their derivatives will be said to satisfy a fractal
differential equation.

Joe Fields Squigonometry



Intro
introduction

motivation

motion profiles
first fractal diffEQ
Taylor series
Fourier series

Automation

I Parts are moved from one station to another where they
are incrementally worked on.

I There are linear and circular transfer systems
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a linear turnkey system
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a rotary system
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barrel cam

Cam followers are pairs of rollers that are often pre-stressed
against the cam rib.
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roller gear
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the venerable geneva mechanism

http://www.youtube.com/watch?v=mEShmrrdFQw
http://youtu.be/ITQf8JRKndE
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Conventions

I Motion consists of a cycle of transfer-dwell-return-dwell.

I Use 90◦ for each of the four phases.

I The two dwells occur at −1 and 1.
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Why not just “patch in” a sine curve?
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velocity of piecewise curve using sine
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acceleration of piecewise curve using sine
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problems

I The maximum acceleration is quite high.

I We are at maximum acceleration for only a brief part of
the transfer period.

I The acceleration curve is discontinuous.

I Infinite jerk.
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minimizing the maximum acceleration

I To achieve the least acceleration we should accelerate at
the maximum value for as long as we can.

I Apply the full acceleration until we’re halfway there then
apply full deceleration until we arrive.

I The motion profile will be piecewise constants and
quadratics.
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A constant acceleration scheme
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A constant acceleration scheme (acc. and vel.)
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A constant acceleration scheme (pos., vel. & acc.)
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problems with constant acceleration scheme

I The maximum acceleration is minimized.

I Okay, that’s not a problem.

I The acceleration curve is discontinuous.

I Infinite jerk.
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Do spikes in jerk really matter?

I Mechanisms are sensitive to the FORCES acting on their
components.

I Forces are proportional to acceleration. (F=ma)

I Jerk can’t be sensed can it?

I Infinitudes in the jerk produce very high transient
accelerations. (shocks)
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What should we do to be kind to the jerk?

I Self-similarity (in the 2nd derivative)

I The acceleration profile needs to accomplish exactly the
same task as the position – transfer from one fixed value
to another smoothly.

I The second derivative should be cobbled together out of
constants and pieces that look like scaled versions of the
original function.

Joe Fields Squigonometry



Intro
introduction

motivation

motion profiles
first fractal diffEQ
Taylor series
Fourier series

What should we do to be kind to the jerk?

I Self-similarity (in the 2nd derivative)

I The acceleration profile needs to accomplish exactly the
same task as the position – transfer from one fixed value
to another smoothly.

I The second derivative should be cobbled together out of
constants and pieces that look like scaled versions of the
original function.

Joe Fields Squigonometry



Intro
introduction

motivation

motion profiles
first fractal diffEQ
Taylor series
Fourier series

What should we do to be kind to the jerk?

I Self-similarity (in the 2nd derivative)

I The acceleration profile needs to accomplish exactly the
same task as the position – transfer from one fixed value
to another smoothly.

I The second derivative should be cobbled together out of
constants and pieces that look like scaled versions of the
original function.

Joe Fields Squigonometry



Intro
introduction

motivation

motion profiles
first fractal diffEQ
Taylor series
Fourier series

the acceleration profile of a the “fractal cam”
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the velocity profile of a the “fractal cam”
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the position profile of a the “fractal cam”
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the jerk profile of a the “fractal cam”
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Taylor series of a fractal cam

I At any point in the domain of the fractal cam, it is
defined by a polynomial

I (for instance it is just quadratic in the regions where the
acceleration is constant)

I The Taylor series at any point is just a polynomial – it
converges to the fractal cam profile only in a small region.

I “Most” Taylor expansions around a point converge on
miniscule intervals.
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Taylor series aren’t particularly suitable.

I Consider the intervals where the profile “dwells.”

I There, the Taylor expansion is identically constant.

I Outside the dwell intervals this Taylor series clearly has no
predictive power.
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of course

I Clearly the fractal cam profile is periodic.

I Taylor series for functions like sin and cos converge pretty
slowly.

I Okay, so Taylor wasn’t the right way to go, but Fourier
. . .
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Fourier series

I We can approximate the fractal cam profile to arbitrary
precision numerically

I Fourier coefficients are also easy to produce numerically.

I The coefficients show no discernable pattern.

I The successive Fourier approximations don’t converge
terribly well to the cam.
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question

I Are there other bases for the space of periodic functions,
relative to which convergence will be faster?

I alternate trigonometries from squircles a.k.a. “fat circles”
(e.g. x4 + y 4 = 1)
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