Differential Equations with a Fractal Character

Joe Fields

http://www.southernct.edu/~fields/
A problem from mechanism design: finding the optimal motion profile for a transfer-dwell-return-dwell cam, has lead to the discovery of a curious family of functions. Functions that are self-similar to one of their derivatives will be said to satisfy a fractal differential equation. We will present several examples and consider this class of functions in the context of Taylor and Fourier series approximations.
Joint work with Leon Q. Brin.
Joint work with Leon Q. Brin.
Automation

- Parts are moved from one station to another where they are incrementally worked on.
Automation

- Parts are moved from one station to another where they are incrementally worked on.
- There are linear and circular transfer systems
a linear turnkey system
a rotary system
barrel cam
Cam followers are pairs of rollers that are often pre-stressed against the cam rib.
roller gear
the venerable geneva mechanism

http://www.youtube.com/watch?v=mEShmrrdFQw
Conventions

▶ Motion consists of a cycle of transfer-dwell-return-dwell.
Conventions

- Motion consists of a cycle of transfer-dwell-return-dwell.
- Use 90\(^\circ\) for each of the four phases.
Conventions

- Motion consists of a cycle of transfer-dwell-return-dwell.
- Use 90° for each of the four phases.
- The two dwells occur at -1 and 1.
Why not just “patch in” a sine curve?
velocity of piecewise curve using sine
acceleration of piecewise curve using sine
problems

- The maximum acceleration is quite high.
problems

- The maximum acceleration is quite high.
- We are at maximum acceleration for only a brief part of the transfer period.
The maximum acceleration is quite high.

We are at maximum acceleration for only a brief part of the transfer period.

The acceleration curve is discontinuous.
problems

- The maximum acceleration is quite high.
- We are at maximum acceleration for only a brief part of the transfer period.
- The acceleration curve is discontinuous.
- Infinite jerk.
minimizing the maximum acceleration

- To achieve the least acceleration we should accelerate at the maximum value for as long as we can.
To achieve the least acceleration we should accelerate at the maximum value for as long as we can.

Apply the full acceleration until we’re halfway there then apply full deceleration until we arrive.
minimizing the maximum acceleration

- To achieve the least acceleration we should accelerate at the maximum value for as long as we can.
- Apply the full acceleration until we’re halfway there then apply full deceleration until we arrive.
- The motion profile will be piecewise constants and quadratics.
A constant acceleration scheme
A constant acceleration scheme (acc. and vel.)
A constant acceleration scheme (pos., vel. & acc.)
problems with constant acceleration scheme

- The maximum acceleration is minimized.
problems with constant acceleration scheme

- The maximum acceleration is minimized.
- Okay, that’s not a problem.
problems with constant acceleration scheme

- The maximum acceleration is minimized.
- Okay, that’s not a problem.
- The acceleration curve is discontinuous.
problems with constant acceleration scheme

- The maximum acceleration is minimized.
- Okay, that’s not a problem.
- The acceleration curve is discontinuous.
- Infinite jerk.
Do spikes in jerk really matter?

- Mechanisms are sensitive to the FORCES acting on their components.
Do spikes in jerk really matter?

- Mechanisms are sensitive to the FORCES acting on their components.
- Forces are proportional to acceleration. \((F=ma)\)
Do spikes in jerk really matter?

- Mechanisms are sensitive to the FORCES acting on their components.
- Forces are proportional to acceleration. \(F = ma \)
- Jerk can’t be sensed can it?
Do spikes in jerk really matter?

- Mechanisms are sensitive to the FORCES acting on their components.
- Forces are proportional to acceleration. \((F=ma) \)
- Jerk can’t be sensed can it?
- Infinitudes in the jerk produce very high transient accelerations. (shocks)
What should we do to be kind to the jerk?

- Self-similarity (in the 2nd derivative)
What should we do to be kind to the jerk?

- Self-similarity (in the 2nd derivative)
- The acceleration profile needs to accomplish exactly the same task as the position – transfer from one fixed value to another smoothly.
What should we do to be kind to the jerk?

- Self-similarity (in the 2nd derivative)
- The acceleration profile needs to accomplish exactly the same task as the position – transfer from one fixed value to another smoothly.
- The second derivative should be cobbled together out of constants and pieces that look like scaled versions of the original function.
the acceleration profile of a the “fractal cam”
the velocity profile of a the "fractal cam"
the position profile of a the “fractal cam”
the jerk profile of a the "fractal cam"
Iterated solution of fractal diffEQ

- Start with an arbitrary function f (e.g. linear) as the transfer curve.
Iterated solution of fractal diffEQ

▶ Start with an arbitrary function \(f \) (e.g. linear) as the transfer curve.
▶ Iterate over the following:
Iterated solution of fractal diffEQ

- Start with an arbitrary function f (e.g. linear) as the transfer curve.
- Iterate over the following:
 - Write a new acceleration profile with (piecewise) scaled copies of f and constants.
Iterated solution of fractal diffEQ

- Start with an arbitrary function f (e.g. linear) as the transfer curve.
- Iterate over the following:
 - Write a new acceleration profile with (piecewise) scaled copies of f and constants
 - Integrate twice to find a new f.

Joe Fields
Fractal DiffEQ
Iterated solution of fractal diffEQ

- Start with an arbitrary function f (e.g. linear) as the transfer curve.
- Iterate over the following:
 - Write a new acceleration profile with (piecewise) scaled copies of f and constants
 - Integrate twice to find a new f.
 - Constants and scaling have to be chosen so that the new f has range $[-1, 1]$.
Iterated solution of fractal diffEQ

- Start with an arbitrary function \(f \) (e.g. linear) as the transfer curve.
- Iterate over the following:
 - Write a new acceleration profile with (piecewise) scaled copies of \(f \) and constants
 - Integrate twice to find a new \(f \).
 - Constants and scaling have to be chosen so that the new \(f \) has range \([-1, 1]\).
- If this iteration approaches a limit – you’ve found the solution to your fractal diffEQ.
The process just described can be thought of as an iterated function system (IFS).
The process just described can be thought of as an iterated function system (IFS).

There is a general theory . . .
The process just described can be thought of as an iterated function system (IFS).

There is a general theory . . .

Len Brin wrote IFS-Tools, an open-source suite of java tools for calculations with iterated function systems.
The process just described can be thought of as an iterated function system (IFS).

There is a general theory . . .

Len Brin wrote IFS-Tools, an open-source suite of java tools for calculations with iterated function systems.

IFS-Tools includes components for playing with fractal differential equations.
The process just described can be thought of as an iterated function system (IFS).

There is a general theory . . .

Len Brin wrote IFS-Tools, an open-source suite of java tools for calculations with iterated function systems.

IFS-Tools includes components for playing with fractal differential equations.

http://ifs-tools.sourceforge.net/
Taylor series of a fractal cam

- At any point in the domain of the fractal cam, it is defined by a polynomial
At any point in the domain of the fractal cam, it is defined by a polynomial

(for instance it is just quadratic in the regions where the acceleration is constant)
Taylor series of a fractal cam

- At any point in the domain of the fractal cam, it is defined by a polynomial
- (for instance it is just quadratic in the regions where the acceleration is constant)
- The Taylor series at any point is just a polynomial – it converges to the fractal cam profile only in a small region.
Taylor series of a fractal cam

- At any point in the domain of the fractal cam, it is defined by a polynomial
- (for instance it is just quadratic in the regions where the acceleration is constant)
- The Taylor series at any point is just a polynomial – it converges to the fractal cam profile only in a small region.
- “Most” Taylor expansions around a point converge on miniscule intervals.
Taylor series aren’t particularly suitable.

Consider the intervals where the profile “dwell.”
Taylor series aren’t particularly suitable.

- Consider the intervals where the profile “dwell}s.”
- There, the Taylor expansion is identically constant.
Taylor series aren’t particularly suitable.

- Consider the intervals where the profile “dwell.
- There, the Taylor expansion is identically constant.
- Outside the dwell intervals this Taylor series clearly has no predictive power.
Clearly the fractal cam profile is periodic.
Clearly the fractal cam profile is periodic.

Taylor series for functions like sin and cos converge pretty slowly.
Clearly the fractal cam profile is periodic.

Taylor series for functions like sin and cos converge pretty slowly.

Okay, so Taylor wasn’t the right way to go, but Fourier ...
We can approximate the fractal cam profile to arbitrary precision numerically.
Fourier series

- We can approximate the fractal cam profile to arbitrary precision numerically.
- Fourier coefficients are also easy to produce numerically.
Fourier series

- We can approximate the fractal cam profile to arbitrary precision numerically.
- Fourier coefficients are also easy to produce numerically.
- The coefficients show no discernable pattern.
Fourier series

- We can approximate the fractal cam profile to arbitrary precision numerically.
- Fourier coefficients are also easy to produce numerically.
- The coefficients show no discernable pattern.
- The successive Fourier approximations don’t converge terribly well to the cam.
Are there other bases for the space of periodic functions, relative to which convergence will be faster?
Are there other bases for the space of periodic functions, relative to which convergence will be faster?

Are there other physically meaningful fractal diffEQs?

How contractive is the IFS for a given fractal diffEQ?
questions

▶ Are there other bases for the space of periodic functions, relative to which convergence will be faster?
▶ alternate trigonometries from “fat circles” (e.g. $x^4 + y^4 = 1$)
▶ Are there other physically meaningful fractal diffEQs?
questions

- Are there other bases for the space of periodic functions, relative to which convergence will be faster?
- Alternate trigonometries from “fat circles” (e.g. \(x^4 + y^4 = 1\))
- Are there other physically meaningful fractal diffEQs?
- How contractive is the IFS for a given fractal diffEQ?