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1. Introduction
A graph is a mathematical object that captures the notion of con-
nection. Most people are familiar with the children’s puzzle of trying
to connect 3 utilites (water, telephone and electricity) to 3 houses
without having any of the “wires” cross. See Figure 1.

ElectricWater Phone

Figure 1: The 3 utilities problem.
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A somewhat less familiar, but actually more germaine example
(this is widely thought to be how graph theory originated) is found
in a puzzle that was posed by the townsfolk of Königsberg, Prussia in
the early 1700’s. Königsberg (now known as Kaliningrad) was built
largely on an island in the Pregel river, this island sits near where two
branches of the river join, and the borders of the town spread over to
the banks of the river as well as a nearby promontory. Between these
four land masses, seven bridges had been erected. See Figure 2.

The townspeople supposedly posed the question “Is it possible to
take a walk through town, crossing each of the seven bridges just once,
and ending up wherever you started?”

The famous swiss mathematician Leonhard Euler (pronounced
“Oiler”) heard of the problem, solved it (it’s not possible) and in
the process invented Graph Theory.

Since the question involved the connection of land masses by bridges,
Euler realized that all the points on the island (for example) were
equivalent as far the question was concerned, so the island as well
as the banks and the promontory could be represented with single
points. In Figure 3 we see what Königsberg and its bridges look like
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Figure 2: The town of Königsberg and its seven bridges.
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in Euler’s abstracted version.

Figure 3: The graph that corresponds to Königsberg and its seven
bridges.
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2. Notation
To formalize our discussion of graph theory, we’ll need to introduce
some terminology.

A graph G is a pair of sets V and E together with a function
f : E 7→ V × V . The elements of V are the vertices (a.k.a. nodes or
points) of G. The elements of E are the edges of G. The function f
sends an edge to the pair of vertices that are its endpoints, thus f is
known as the edge–endpoint function. This terminology is unfortunate
since f is generally only a relation.

Informally, we usually forget about the edge–endpoint function
and simply identify E with a sub-multiset of V × V . We need to
think of E as a sub-multiset because there may be more than one
edge between a given pair of vertices.

Connections generally come in two forms, those that are non-
directional (e.g. the bridges of Königsberg) and those that have an
implicit direction (e.g. the utility hookups – water flows from the
utility to one’s home, not vice versa). To distinguish these two cases
we really need to define two different kinds of graphs. We will use
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the term graph to indicate a graph where the connections are non-
directional – if we need to really emphasize this point we might say
ordinary graph or undirected graph. For situations in which the con-
nections are directional, we use the term digraph – a contraction of
directed graph. Note that in our original definition, the codomain of
the edge–endpoint function was the set V × V of ordered pairs of
vertices, or, equivalently in the informal version, we think of E as
consisting of a sub-multiset of these ordered pairs. Now we can ex-
plain the comment that f is only a relation. Suppose ek is an edge in
an ordinary graph that connects vertices vi and vj , then both of the
ordered pairs (vi, vj) and (vj , vi) should be images of ek under f – i.e.
f is many-valued.

The problem discussed in the previous paragraph could be as-
suaged by making the codomain of f be the set of all 2-subsets of
V , but this introduces its own problem: shouldn’t it be possible for a
vertex to be connected to itself? The answer is that for some problem
types one would like to have graphs that allow for the possibility of
a vertex being connected to itself. Such edges are called loops in the
graph G and while (vi, vi) is an element of V × V , it is not true that
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{vi, vi} is a 2-subset of V .
The most general definition for an ordinary graph would be to

identify E with a sub-multiset of the set of all 2-sub-multisets of V
(multisets containing either 2 distinct elements of V or 2 copies of
the same element). In practice, such a high level of correctness is not
necessary.

In many applications, one deals with graphs that have neither
loops nor multiple copies of the same edge (these are known as parallel
edges). Such graphs are called simple graphs.

All in all, there are four types of graphs we’d like to distinguish.

1. Graphs (no restrictions on loops and parallel edges)

2. Simple graphs (may not have loops or parallel edges)

3. Digraphs (no restrictions)

4. Simple digraphs (no loops, no parallel edges)

Note that in a simple digraph edges that run between the same
vertices but in opposite directions are not considered parallel.
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Figure 4: An undirected graph without restrictions. Graphs such as
this may have loops and parallel edges.
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Figure 5: A simple undirected graph. Graphs of this type may not
have loops or parallel edges.



Section 2: Notation 13

Figure 6: A non-simple directed graph.
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Figure 7: A simple directed graph. Note that edges having the same
endpoints but going in opposite directions are allowed.
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Begin Quiz Answer each of the following.
1. Can there be edges having the same endpoints in a simple di-

graph?

Yes No

2. Can there be edges having the same endpoints in a simple (undi-
rected) graph?

Yes No

End Quiz

Answers:
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3. A compendium of graphs
Certain graphs occur frequently enough that they deserve names.

A complete graph on n vertices is a simple (undirected) graph
having the maximum possible number of edges. Complete graphs
are denoted Kn (probably because complete is spelled with a ‘K’ in
German). The complete graphs on 1 through 5 vertices are shown in
Figure 8.

Figure 8: The complete graphs Kn for 1 ≤ n ≤ 5.
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Begin Quiz Answer each of the following.
1. How many edges are there in a complete graph on 5 vertices?

none 5 10 all
2. Are there parallel edges in a complete graph?

Yes No
3. How many edges are there in general in a complete graph that

has x vertices?

End Quiz



Section 3: A compendium of graphs 18

In certain situations, graphs which have connections that only go
between 2 “clumps” of vertices are studied. For example, a famous
problem in discrete math is the assignment problem in which workmen
are assigned to operate machines. Each person can only competently
operate some subset of the machines. There is a graph that is used
in solving the problem, the vertices fall into 2 groups, the people and
the machines – edges are placed between a person and the machines
s/he can operate.

A more whimsical version of this problem is known as the “Mar-
riage problem” – in a small town, there are several young women
and young men of the appropriate age to marry. Each woman has a
list of men who she would find acceptable as a spouse. Is it possible
for a matchmaker to pair-up these people so that each women gets a
husband she finds acceptable?

Graphs such as those involved in the assignment problem are called
bipartite. A graph G is bipartite if there is a partition of V (G) into two
disjoint sets and there are no edges such that both of their endpoints
are in one of these sets.

A complete bipartite graph is a bipartite graph having the max-
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imum possible number of edges. Complete bipartite graphs are de-
noted Km,n where m and n are the sizes of the sets in the partition.
Some complete bipartite graphs are shown in Figure 9.

Figure 9: The complete bipartite graphs K3,3 and K2,4.
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Another interesting family of graphs consists of n dimensional hy-
percubes. In two dimensions, this means a square. In three dimen-
sions, an ordinary cube. The “hyper” prefix only becomes appropriate
in dimension greater than 3. This family of graphs is defined recur-
sively. To make a n-dimensional hypercube, take two copies of an
n − 1-dimensional hypercube and connect corresponding vertices in
the copies. See Figure 10.



Section 3: A compendium of graphs 21

Figure 10: The first several hyercubes – dimensions 1 through 4.
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Our finally example of a “named” graph is the Petersen graph.
This graph is interesting for many reasons, one of which is the way it
can be constructed from another graph. Consider the complete graph
K5 which has 10 edges. The vertices of the Petersen graph correspond
to those edges (of K5), two vertices are connected by an edge in the
Petersen graph if the corresponding edges in K5 meet at a vertex (of
K5).
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Figure 11: The Petersen graph, named for itsdiscoverer, the Danish
mathematician Julius Petersen.
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4. Isomorphism
The word isomorphism cames from Greek roots, its meaning is roughly
“equal shapes.” We say that two graphs are isomorphic if there is a
function φ that maps the vertex set of one graph to the vertex set of
the other; additionally, this function must be a bijection (one-to-one
and onto) and it must respect the edge-endpoint relation. That is, if
vi and vj are connected by some number of edges in the first graph
then φ(vi) and φ(vj) are connected by the same number of edges in
the second.

In a more formal treatment we would require φ to map both the
vertex set and the edge set, and the phrase “respect the edge-endpoint
relation” would mean that

f(e) = v ⇐⇒ f(φ(e)) = φ(v)

where f denotes the edge endpoint relation.
There are a great number of properties called graph invariants that

can be used to decide whether graphs are not isomorphic. For instance
if two graphs have a different number of nodes, they cannot possibly
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be isomorphic (φ couldn’t be a bijection in that case). Similarly, two
isomorphic graphs must have the same number of edges.

Clearly these conditions are not sufficient. Consider the two graphs
in Figure 12, they both have 5 vertices and 5 edges, but obviously
there is something different about them.

Figure 12: Non-isomorphic graphs that have the same number of ver-
tices as well as edges.
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One feature that can be used to distinguish the graphs in Figure 12
is the degrees of their vertices. The degree of a vertex v in a graph
G is the number of edges that are incident with it. (Note that since
a loop is incident twice with the same vertex, it will add two to the
degree of that vertex.) There is a vertex having degree 1 in the graph
on the left in the figure, whereas all the vertices in the right-hand
graph have degree 2.

Quiz Which of the pairs of graphs in Figure 13 are isomorphic?
(a) none (b) 1st but not

2nd
(c) 2nd but not

first
(d) both
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Figure 13: Are these pairs of graphs isomorphic?
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Another graph invariant that is easily used to detect the difference
between non-isomorphic graphs is the number of cycles of a given
length. A cycle in a graph is a path along the edges of G that begins
and ends in the same place and never hits a vertex (other than the
initial one) more than once – it must also not cross any edge more
than once. Consider the non-isomorphic graphs from the quiz. The
graph on the left in Figure 13 has only even length cycles, whereas
the graph on the right has cycles of length 5.

There are many other properties of graphs that are invariants
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Solutions to Quizzes
Solution to Quiz:

The first pair of graphs are isomorphic (both are the Pe-
tersen graph). The second pair can be differentiated, the
left graph has only even cycles, the graph on the right has
some odd cycles.

End Quiz
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